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Abstract

We consider 2D earth models consisting of laterally variable layers. Boundaries
between layers are described by their depths at a set of nodes and interpolated laterally
between nodes. Conductivity within each layer is described by values at a set of nodes
fixed within each layer, and is interpolated laterally within each layer. Within the set of
possible models of this sort, we iteratively invert magnetotelluric data for models
minimizing the lateral roughness of the layer boundaries, and the lateral roughness of
conductivities within layers, for a given level of data misfit. This stabilizes the inverse
problem and avoids superfluous detail. This approach allows the determination of
boundary positions between geological units with sharp discontinuities in properties
across boundaries, while sharing the stability features of recent smooth conductivity
distribution inversions.

We compare sharp boundary inversion results with smooth conductivity distribution
inversion results on a numerical example, and on inversion of field data from the
Columbia River flood basalts of Washington State. In the synthetic example, where
true positions and resistivities are known, sharp boundary inversion results determine
both layer boundary locations and layer resistivities accurately. In inversion of
Columbia flood basalt data, sharp boundary inversion recovers a model with
substantially less internal variation within units, and less ambiguity in both the depth
to base of the basalts and depth to resistive basement.

Introduction

In many instances of interpretation of field data, an investigator may suspect that the
geology of a field area lends itself to approximation by a model consisting of a few layers
of laterally varying thickness and perhaps laterally varying conductivities. This kind of
model is particularly appropriate for many areas of current interest in petroleum
exploration world-wide. Magnetotellurics (MT) are most often considered in petroleum
exploration in cases which are difficult for seismic imaging. A near-surface unit of high
resistivity and velocity (salt, basalt or carbonate) overlying prospective sediments above
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basement is the most common case. In such cases, the geometry of the base of the
resistive unit and of the basement surface are primary interpretational goals.

Recent inversions have been successful in finding smoothly varying two-dimensional
models fitted to magnetotelluric data (e.g. deGroot-Hedlin and Constable 1990; Smith
and Booker 1991). These inversions have been explicitly formulated to minimize some
measure of the roughness of a conductivity model for some level of squared data misfit.
For example, minimizing�

∂
∂x

logðjÞ

� �2

þ
∂
∂z

logðjÞ

� �2

dx dz þ bjrj2;

where j(x, z) is the conductivity, jrj2 is the squared data misfit and b> 0 is a trade-off
parameter, results in a model which is smooth in both vertical and horizontal directions.

For non-linear problems, such as inversion of 2D magnetotelluric data, inversions of
this sort are generally made iteratively, linearizing about some current model at each
iteration, and a sequence of models is generated. To avoid unnecessary difficulties with
non-linearities, inversions are generally started from relatively smooth models and a
relatively small value of b. As an inversion progresses, greater emphasis is placed on
fitting data by increasing the value of b, resulting in models with progressively more
detailed structures. The underlying assumption is that by varying b slowly enough,
changes to the conductivity model will be small enough for equations based on
linearization to result in progressively ‘better’ models, leading to a model, smoothest for
its level of misfit, within a moderate number of iterations. Smooth models fitted to data
generated from models with sharp boundaries may not resolve the positions of
boundaries as well as desired. A smoothest model adequately fitting a data set makes
evident resolution limits of the data set in the sense that the data by themselves certainly
do not require sharper transitions than are found in such a model.

However, if it is suspected that a field area is comprised of a few relatively uniform
geological units with abrupt changes in conductivity between units, then a model
parametrized in terms of sharp boundaries between units of differing conductivity may
be more appropriate. A number of 2D inversions have been formulated along these
lines (e.g. Eysteinsson 1986; Marcuello-Pascual, Kaikkone and Pous 1992). A fairly
standard tactic has been to parametrize the location of boundaries, to compute partial
derivatives of data with respect to parameters, and to invert iteratively for changes to
the parameters using a damped matrix inversion. In such a method, data may not
uniquely resolve all desired parameters of an inversion: parameter values may depend
on implementation in an arbitrary manner and the resulting models may contain
unresolvable details. We minimize unresolvable details by explicitly seeking models that
minimize the roughness of the boundaries between units, as well as the roughness of
resistivity variations within units.

Method

In principle, arbitrarily complicated 2D models can be developed by specifying
the conductivities of different geological units and specifying the positions of their
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boundaries at a series of points along the boundaries. We restrict our attention to
models comprised of layers with laterally variable thicknesses, with layer interface
positions specified at nn nodes along each interface and interpolated between nodes.
For a model consisting of nb layers over a basal half-space, each layer interface is
specified by its depth at nn nodes. The series of depths for nb interfaces yields an nbnn

long vector m of parameters,

ðz11; z12; . . . ; z1nn ; z21; . . . ; znbnn Þt; ð2aÞ

where zij is the depth of the j th node of the i th interface, and superscript t denotes
transpose. If conductivities are unknown, nb þ 1 unknown layers and half-space
conductivities jj may be appended to m. For layers with laterally varying
conductivities, we specify the conductivity within each layer at the nn nodal positions
and interpolate it horizontally, and append these additional parameters to m,
obtainingÿ

z11; . . . ; z1nn ; . . . ; znbnn ; logðj11Þ; . . . ; logðj1nn Þ; . . . ; logðjnbnn Þ
�t
; ð2bÞ

where jij is the conductivity of the i th layer at the j th node.
Once a model parametrization has been chosen, an inversion is specified by choosing

a functional to minimize. For variable thickness layered models with specified layer
conductivities, we might choose to minimize a functional such as�

d
dx

z1ðxÞ

� �2

dx þ . . . þ

�
d
dx

znb
ðxÞ

� �2

dx þ bjrj2; ð3Þ

for layer boundaries written as continuous functions zi(x) of horizontal position. For
models, specified by a finite number of parameters, such as vector (2a), we may
approximate derivatives by finite differences and integrals by sums. Defining an
nb ? (nn ¹ 1) by nbnn roughening matrix R as

¹1=Dx11 1=Dx11 0 . . . 0

0 ¹1=Dx12 1=Dx12 0 . . . 0
. . .

0 . . . 0 ¹1=Dx1nn¹1 1=Dx1nn¹1 0 . . . 0

0 . . . 0 ¹1=Dx21 1=Dx21 . . . 0
. . .

0 . . . 0 ¹1=Dxnbnn¹1 1=Dxnbnn¹1

2666666666664

3777777777775
with Dxij being the horizontal spacing between the j th and ( j þ 1)th nodes of the
i th interface, then the first nn ¹ 1 rows of the product Rm approximate the derivative
dz1/dx along the nn ¹ 1 segments between the nodes of the first interface, the next
nn ¹ 1 rows approximate the derivative dz2/dx at the nn ¹ 1 segments along the second
interface, and so forth. Weighting the rows of the roughening matrix by the
corresponding Dx1/2

ij would weight the squares of the elements of Rm by the
corresponding interval lengths Dxij, so that jRmj2 ; mtRtRm would approximate
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the sum of integrals in (3). We use a slightly different weighting of approximate
derivatives,

Rb ¼

¹w11 w11 0 . . . 0

0 ¹w12 w12 0 . . . 0
. . .

0 . . . 0 ¹w1nn¹1 w1nn¹1 0 . . . 0

0 . . . 0 ¹w21 w21 . . . 0
. . .

0 . . . 0 ¹wnbnn¹1 wnbnn¹1

2666666666664

3777777777775
;

ð5Þ

and choose weights wij constant for each interface: wi ; wi1 ¼ wi2 ¼ . . . ¼ winn ¹ 1.
When laterally varying layer conductivities are included as unknown model

parameters, as in parametrization (2b), the roughening matrix is extended with
another nbnn columns and nb ? (nn ¹ 1) rows, so that

R ¼
Rb 0

0 Rc

" #
; ð6Þ

where Rc is of the same form as Rb with a possibly different set of weights, w0
i, i ¼

1, . . . ,nb. The submatrix Rc multiplies layer conductivity parameters in the product
Rm. The lower nb ? (nn ¹ 1) rows of Rm approximate the horizontal derivative
d log (j)/dx within the layers. For models with laterally varying layer conductivities,
when minimizing

jRmj2 þ bjrj2; ð7Þ

the relative magnitudes of weights wi and w0
i, used in forming Rb and Rc, affect the

relative importance placed on the smoothness of layer boundaries and layer
conductivities, respectively. The relative magnitudes of weights wi, w0

i and parameter
b affect the relative importance placed on model smoothness and data fit, respectively.

Magnetotelluric data depend on model parameters non-linearly, so we use an
iterative approach to minimizing (7). We write measurements of apparent resistivity
and phase at ns sites and nf frequencies each as an element of an nd long data vector
d(obs), and the response of a model m as d. Letting Fi be the matrix of data partial
derivatives with respect to model parameters evaluated at some model mi with
response di, then linearizing about mi gives

d ¹ di ¼ Fi ? ðm ¹ miÞ; ð8Þ

where second-order terms in (m ¹ mi) have been neglected. Writing residuals of the
measured data with respect to model response d as a vector,

r ; dðobsÞ ¹ d; ð9Þ
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and using linearization (8) gives

r ¼ d0 ¹ Fi m; ð10Þ

where

d0 ; dðobsÞ þ Fi mi ¹ di ð11Þ

on the i th iteration. We use this expression for r as a function of m in expression (7).
The minimum of (7) is a stationary point with respect to perturbations dm: at the
minimum the difference between (7) written for m þ dm and r þ dr, where

r þ dr ¼ d0 ¹ Fi ? ðm þ dmÞ; ð12Þ

and written for m and r, must vanish to the first order in dm, for all possible dm. That
is, the coefficient of dm in (7) must vanish. This requirement yields

ðb F t
i Fi þ Rt RÞm ¼ b F t

i d0: ð13Þ

For np model parameters, this is an np by np system of equations. We use this equation
to estimate a new model m at each iteration, based on partial derivatives updated about
the previous model mi. Additional details are given in the Appendix.

For very small values of b, the matrix on the left side of equation (13) approaches
RtR, which is singular for the two examples given above, R ¼ Rb for parametriza-
tion (2a) and equation (6) for parametrization (2b). The rows of Rb form a set of
nb ? (nn ¹ 1) linearly independent vectors, so RtR has rank nb ? (nn ¹ 1) in the first
example, and twice this in the second. In these examples RtR is an nbnn or a 2nbnn

square matrix, so it has nb or 2nb zero eigenvalues, respectively.
The jRmj2 term in the object function (7) penalizes components of m in the

directions of eigenvectors of large eigenvalues of RtR, that is, in the directions of right
singular vectors of large singular values of R. Components of m in the directions of
eigenvectors of zero eigenvalues of RtR are undamped. If some of these undamped
directions are poorly constrained by the data, as are directions corresponding to
eigenvectors of small eigenvalues of FtF, inversion results may not be particularly
satisfying. We augment the roughening matrix R so that RtR has fewer zero eigenvalues
and (FtF þ RtR/b) has fewer undamped directions.

For interface depth inversion (parametrization (2a)), the roughening matrix R ¼ Rb

is insensitive to the means of the depths to each interface, Szij /nn summed over j ¼ 1,
nn for i ¼ 1, nb . This suggests augmenting R to add some penalty based on mean
interface depths. We augment R with nb ¹ 1 additional rows of the form

ð0; . . . ; 0;¹wdz; . . . ;¹wdz;wdz; . . . ;wdz; 0; . . . ; 0Þ; ð14Þ

where, in the i th additional row, the negative entries multiply the nn depths to the nodes
of the i th interface and the positive entries multiply the nn depths to the nodes of the
(i þ 1)th interface in the product Rm, yielding a weighted first difference between
average interface depths in the two layers. With this augmentation, RtR only has one
remaining zero eigenvalue, and its eigenvector corresponds to the mean of all interface
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depths. This choice of augmentation to Rb introduces a preference for models with the
average interface depth in each layer close to those in adjacent layers, that is, a
preference for thin layers. Instead of parametrizing the model m in terms of depths to
interfaces (2a), we may parametrize it in terms of depth below the previous interface,
that is, in terms of the layer thicknesses

ðDz11;Dz12; . . . ;Dznbnn Þt; ð15Þ

where Dzij ; zij ¹ zi ¹ 1 j is the thickness of the i th layer at the j th horizontal node. In
this case, the augmentation to Rb introduces a preference for uniform average layer
thicknesses. Parametrizing the model m in terms of logarithms of layer thicknessesÿ

logðDz11Þ; logðDz12Þ; . . . ; logðDznbnn Þ
�t
; ð16Þ

allows layer thicknesses to remain positive.

Synthetic data example

We generated 23 sites of TM-mode data at 26 frequencies logarithmically spaced from
0.001 Hz to 100 Hz, from a simple layered 2D model, with layer boundaries as shown
by white lines in Fig. 1. The model consists of a surface layer of 300 Qm (e.g. basalt)
over a 20 Qm layer (e.g. sediments) over a 100 Qm basement at 12 km depth. The
surface layer thins from 2.5 km to 0.7 km over a lateral distance of 12 km. The model
response was calculated using the same forward modelling code (Wannamaker and
Stodt 1987) as used in forward modelling steps within our inversion. To simulate
measurement errors, 5% Gaussian noise was added to apparent resistivities and
impedance phases.

In inversion, the model was parametrized in terms of interface depths, log(zij)
( j ¼ 1, 23), (i ¼ 1, 2), at nodes directly below the data sites, and layer and basement
conductivities, log(jij), at corresponding nodes ( j ¼ 1, 23), (i ¼ 1, 3). Default rough-
ening matrix weights wi ¼ i and w0

i ¼ i were used, placing increased emphasis on
smoothness with increasing depth. Default vertical roughening weights of wdz ¼ i/nn /10
were used. Equal emphasis was placed on smoothness of conductivity within layers,
and smoothness of layer interfaces (wi ¼ w0

i). A goal of one standard error rms misfit
was chosen for inversion corresponding to the noise level in the input data, and this was
achieved in the final iterations of the inversion.

Sharp boundary inversion (SBI) results are shown in Fig. 1a. Layer boundaries are
shown in black. The resistivities plotted are those resulting from projection of our
variable thickness/variable resistivity layer models on to a fixed finite-element mesh
used in calculating their responses (see Appendix). Basalt resistivities (surface layer)
are matched within 4% over the length of the profile. The base of this layer is matched
to within 150 m throughout the model. Sediment resistivities (second layer) are
matched within 5% throughout the entire unit, and basement resistivities are matched
within 2%. The particular result shown was started from a 1D model with uniform
layer resistivities of 200, 160 and 300 Qm. Starting the SBI inversion from other initial
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models has given almost identical results, giving some confidence that the algorithm
has found a global minimum of the object function. However, in inversions such as this,
in which model geometry is included in the unknown parameters, we expect that local
minima may be a greater concern than they seem to be in inversions in which model
geometry is held fixed.

For comparison, the same synthetic data have been inverted using a smoothly
varying inversion algorithm (deGroot-Hedlin and Constable 1990), started from a
300 Qm half-space and resulting in the model shown in Fig. 1b. In addition to the
deGroot-Hedlin-Constable (1990) algorithm, we have made extensive use of the RRI
algorithm of Smith and Booker (1991) and a non-linear conjugate gradient algorithm
of Mackie et al. (1997), both of which also invert for smooth conductivity distributions.
In our experience, there are three main observations that can be made about smooth
inversions of data from models with sharp boundaries, which are illustrated to varying
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Figure 1. (a) Sharp boundary inversion of data from a three-‘layer’ model with sloping interface.
Black lines: inversion layer interfaces. White lines: true layer interfaces. (b) Minimum structure
smooth inversion of same data. White lines: position of layer interfaces in true model.



degrees in Fig. 1. Firstly, in smooth inversions of data from models with interfaces that
vary considerably in depth, different contour intervals correspond to the actual
interface position at different depths: the deeper the interface, the lower the resistivity
of the corresponding contour. For example, on the right in Fig. 1b, the upper interface
lies at 720 m depth, with resistivity between 250 and 350 Qm, while on the left it lies at
2550 m depth with resistivity between 30 and 40 Qm, in the smooth inversion result.
Secondly, smooth inversion of data from models with sharp boundaries tends to
overshoot resistivities on either side of a boundary. In Fig. 1b, the smooth inversion
results overshoot by about 20%, attaining highs of about 350 Qm for the 300 Qm basalt,
and lows of about 16 Qm for the 20 Qm sediments. Thirdly, smooth inversion results
generally have increased smoothing with increasing depth. In Fig. 1b, the transition
from sediment to basement resistivities is more spread out than the transition from
basalt to sediment resistivities in the smooth inversion results. The data by themselves
are unable to resolve whether the transition to basement resistivities is smooth or
abrupt. However, assuming that the transition is abrupt, as we do in Fig. 1a, the depth
and resistivity of basement are quite accurately recovered.

Field data example

We consider magnetotelluric data from a survey line somewhat east of Ellensburg,
Washington, shown in juxtaposition with topography and interpreted structure in Fig. 2
(line 400). The line consisted of 34 sites, spaced 242 m apart with in-line electric field
dipoles laid end to end. Original processing frequencies differ from site to site, so the
data were binned to 5 frequencies per decade yielding 25 frequencies common to all
sites. Line 400 was laid out as a dip line to be approximately perpendicular to strike. Geo-
electric strike interpreted from polar diagrams (not shown) varies somewhat along the
line, but is generally perpendicular to the line direction. We interpret the Zxy impedances,
with E in-line and B perpendicular, as TM-mode data, and it is plotted in terms of
apparent resistivity and phase in Fig. 3. Interpreting this polarization as 2D TM-mode
data, the obvious site-to-site shifts in apparent resistivity magnitude can be fitted by
lateral resistivity variations at the earth’s surface in a 2D model. Since the data are end-
to-end dipole data, we do not expect them to be affected by surface structures much
smaller than the site spacing. For want of rigorous impedance variance estimates, we
have assumed 10% uncertainty in both apparent resistivity and phase data.

In the vicinity of the survey, approximately two kilometres of resistive flood basalts
overlie several kilometres of more conductive sediments, in turn overlying a more
resistive basement. More details of the geological setting and the MT data set are given
by Morrison et al. (1996). The depth to the sediments and their thickness are of
particular concern as gas deposits have been found and exploited within the sediments
at other locations in the Columbia Basin. A two-layer-over-basement model (as in
Fig. 1) includes the parameters of greatest interest. We consider the site-to-site shifts
observed in the line 400 magnitude data to be most probably due to lateral variations
at the earth’s surface, so add a near-surface layer to allow this to be modelled. We
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also add a deep conductor to enable us to fit the low-frequency roll-off of apparent
resistivities.

The SBI algorithm was started from a four-layer-plus-basement model with
interface depths of 0.2, 2, 4 and 11 km. Starting layer resistivities were 300, 300, 20,
150 and 20 Qm. Parameter nodes were below the measurement sites. This yields a total
of 136 interface nodes and 170 resistivity nodes. The final SBI inverse model which
reached an rms misfit of 2.0 standard errors is shown in Fig. 4. The upper two layers
comprise the basalt flow sequence with the upper part more conductive (< 100 Qm)
than the lower part (< 300 Qm). The increased conductivity is consistent with the
expected effects of weathering near the surface. The sediments are represented by the
third layer with resistivities ranging from 3 to 28 Qm. Basement resistivities range from
80 to 300 Qm. The deep conductor (not shown) averaged 5 Qm with an average depth
of 15 km. Inversion model response and input data are plotted together in x ¹ y plots
site by site in Figs 5 and 6.

For comparison, we inverted the same data set using the deGroot-Hedlin and
Constable (1990) smooth conductivity distribution inversion algorithm. Starting from
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Figure 2. Location of Columbia basalt data line 400, with respect to topography (greyscale) and
anticlinal structures interpreted from surface geology (solid lines), from Morrison et al. (1996).
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Figure 3. Columbia basalt line 400, Zxy impedance data, with Ex in-line direction. (a) Apparent resistivity. (b) Phase.



a 300 Qm half-space, the algorithm resulted in a model with an rms misfit of 1.9 standard
errors, shown in Fig. 7. We have superimposed the SBI inverse layer boundary positions.
Differences between the two models underline the difficulties involved in making a
discrete geological unit interpretation of a smooth conductivity distribution inversion.
The deGroot-Hedlin-Constable (1990) smooth inversion shows considerably more
lateral variation in resistivities, both within the basalts and within the underlying
sediments. One might interpret a somewhat deeper basalt base from the smooth
inversion than is evident in the sharp boundary inversion results (bottom of second
layer). Basement relief is quite consistent between the two inversions, with the smooth
inversion yielding lower resistivities at a given depth than the sharp boundary inversion,
consistent with the synthetic results in the previous section.

Conclusion

If relatively little is known about a survey area, interpretation in terms of a minimum
structure smooth inversion such as those of deGroot-Hedlin and Constable (1990)
or Smith and Booker (1991) quickly indicates what can be inferred about the study
area from a data set by itself. The blurriness of the results of a minimum structure
smooth inversion gives some idea as to resolution limits of a given data set. When it
is suspected that the field area is made up of a few relatively homogeneous units, the
positions of boundaries can be recovered more precisely using a sharp boundary
inversion. Inverting directly for boundary positions in a sharp boundary inversion
makes interpretation for structural geology easier.
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Figure 4. Sharp boundary inversion of data from Columbia basalt line 400. White lines:
inversion interface location. Colour: resistivity of sharp boundary layered model projected on to
finite-element mesh.
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Figure 5. TM-mode apparent resistivity response of sharp boundary inversion (Fig. 4) as a function of frequency at individual measurement
sites, from top to bottom, left to right. Smooth curves: model response. Erratic curves: Columbia basalt line 400 data.



S
harp

boundary
inversion

481

q
1999

E
uropean

A
ssociation

of
G

eoscientists
&

E
ngineers,G

eophysicalP
rospecting,47,469

–486

Figure 6. TM-mode impedance phase response of sharp boundary inversion (Fig. 4) as a function of frequency at measurement sites, from
top to bottom, left to right. Smooth curves: model response. Erratic curves: Columbia basalt line 400 data.



A sharp boundary inversion provides MT interpreters with a tool specifically designed
for structural interpretation. By parametrizing inverse models in terms of boundaries
between units which may possess large contrasts in conductivity, inversions which
unambiguously locate such boundaries can be produced. In the case of petroleum
exploration, where the base of a sequence of relatively uniform basalt, salt or carbonate
is the goal of an MT survey, a sharp boundary inversion provides advantages over a
smooth inverse model which leaves the interpreter with the need to interpret the
smooth inverse model for the location of structural interfaces.
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Appendix

A non-linear minimum roughness inversion algorithm

We approach the minimum of expression (7) iteratively, starting at some model mi

computing the partial derivative matrix Fi numerically at mi, and solving equation (13)
for an estimated new model m̂i þ 1 ¼ m. Equation (13) is based on linearization (8),
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Figure 7. Minimum structure smooth inversion of Columbia basalt line 400 data. White lines:
sharp boundary inversion interface positions from Fig. 4.



which assumes that the change in the model (m̂i þ 1 ¹ mi) is small enough to neglect
second-order terms in (m̂i þ 1 ¹ mi). We consider an iteration successful if, on
computing the response di þ 1 of a model mi þ 1, the objective function (7) decreases for
the current value of b, i.e. if

jRmiþ1j
2 þ bjriþ1j

2 # jRmi j
2 þ bjri j

2: ðA1Þ

As the model where partial derivatives are evaluated, mi, may not yet be at a minimum
of expression (7) for any value of b, adjusting b and recomputing m̂i þ 1 does not
guarantee that (m̂i þ 1 ¹ mi) can be made small enough for the condition (A1) to hold
for mi þ 1 ¼ m̂i þ 1. Taking a partial step in the desired direction by letting

miþ1 ¼ mi þ a ? ½m̂iþ1 ¹ miÿ; ðA2Þ

with 0 <a # 1, we can choose a small enough so that condition (A1) can be made to
hold for mi þ 1, assuming that equation (13) is non-singular.

Smith and Booker (1988) give a simple criterion for choosing between reducing a

and reducing b to reduce the step size. In their formulation, the squared misfit can be
written as a function of the trade-off parameter b with the form

jr̂iþ1ðbÞj2 ¼
Xnd

k¼1

gk

1 þ blk

� �2

; ðA3Þ

(their equation A9), where lk $ 0 and gk are known, for the estimated model m̂i þ 1(b)
considered as a function of b, based on a linearization similar to equation (8). They
solve an equation of the form (A3) for the value bs which linearization predicts should
result in the smoothest model m̂i þ 1(bs) with the current level of misfit
jr̂i þ 1(bs)j

2 ¼ jrij
2. They divide the model change a ? [m̂i þ 1 ¹ mi] into two parts,

a ? [m̂i þ 1(b) ¹ m̂i þ 1(bs)] and a ? [m̂i þ 1(bs) ¹ mi]. The first part is proportional to the
difference between an estimated model m̂i þ 1(b), with b chosen so as to reduce the
misfit, and the model estimated to be the smoothest model with the current misfit, so
representing a model improvement step. The second part represents a model
smoothing step as it attempts to smooth the current model without reducing its
misfit. When a step size needs to be reduced to lower the object function then, if
jm̂i þ 1(b) ¹ m̂i þ 1(bs)j> jm̂i þ 1(bs) ¹ mij, the improvement part of the step is
diminished by choosing b closer to bs, otherwise the entire step size is diminished by
reducing a. We use the same criterion here.

Smith and Booker (1988) derived their equation of form (A3) for a 1D continuous
profile inverse problem. Smith (1988) derived the analogous equation for a minimum
roughness discrete inverse such as is presented here. Calculation of coefficients gk and
lk involves finding the eigenvectors and eigenvalues of an nd by nd matrix computed
from Fi and R. An alternative method to solve for b giving a chosen level of the
estimated squared misfit jr̂i þ 1(b)j2 is to solve equation (13) for model estimates
m̂i þ 1(b) for a few values of b using Cholesky decompositions of (bFt

iFi þ RtR), use
equation (10) to evaluate their estimated residuals r̂i þ 1(b), and interpolate between
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squared misfit values jr̂i þ 1(b)j2 using an interpolation function based on a single term
of the form of expansion (A3):

jr̂ðbÞj2 <
g

1 þ bl

� �2

; ðA4Þ

with g and l chosen to match the calculated jr̂i þ 1(b)j2 at two values of b. Equation
(A4) can be solved for b for desired levels of estimated misfit. Letting b i and b i

s be two
values of b used in the previous iteration, m̂i þ 1(b i) and m̂i þ 1(b i

s) be the corre-
sponding models estimated using equation (13), and r̂i þ 1(b i) and r̂i þ 1(b i

s) be their
respective estimated residuals from equation (10), we interpolate jr̂i þ 1(b)j2 using
(A4), and solve for b i þ 1

s yielding an estimated squared misfit jr̂i þ 1(b i þ 1
s )j2 equal to

the current level of squared misfit jrij
2. We also use the interpolating function (A4) to

solve for the reciprocal damping factor b i þ 1
g which yields an estimated residual

jr̂i þ 1(b i þ 1
g )j2 equal to the level eventually desired. The reciprocal damping factor b i þ 1

used in an iteration is chosen between these values. In particular, we choose b i þ 1 based
on the scales of RtR and Ft

iFi :

biþ1 ¼ z ? traceðRtRÞ=traceðFt
iFiÞ; ðA5Þ

where the trace of a matrix is the sum of its diagonal elements, and z is an adjustable
parameter. In general, we start with z ¼ 1 on the first iteration, and z is later adjusted
in tandem with a to control the step size, eventually attaining values giving b i þ 1 ¼

b i þ 1
g on later iterations.
In forming equations (11) and (13) at each iteration, we need to compute the partial

derivative matrix Fi. We do this by finite differencing. We use subroutines based on the
finite-element method of Wannamaker and Stodt (1987) to solve the electromagnetic
induction forward problem on a fixed mesh. Our variable thickness layered models m
are projected on to the fixed mesh of the finite-element grid, and element conductivities
are assigned in proportion to element portions within each layer. These subroutines set
up linear systems of equations of the form

Ax ¼ b ðA6Þ

for each frequency and mode modelled, and we factorize the coefficient matrix A as
A ¼ LU where L is lower triangular and U is upper triangular, to solve Ax ¼ b, by
solving Lx0 ¼ b and Ux ¼ x0. In computing partial derivatives we use the distributive
law to write perturbed systems as

A ? ðx þ dxÞ ¼ ðb þ dbÞ ¹ dA ? ðx þ dxÞ; ðA7Þ

or

A ? ðx þ dxÞ ¼ ðb þ dbÞ þ b ¹ ðA þ dAÞx ¹ dA dx; ðA8Þ

where (A þ dA) and (b þ db) are calculated for a perturbed model (mi þ dm), vectors
b and x are obtained from previous calculation of the unperturbed case, and we solve
(A8) for (x þ dx), neglecting the second-order term dA dx. This allows (A8) to be

484 T. Smith et al.

q 1999 European Association of Geoscientists & Engineers, Geophysical Prospecting, 47, 469–486



solved using the LU factors of A previously calculated in solving the unperturbed
forward problem.

Even with reuse of LU factors, computing partial derivatives takes a significant
amount of time. To save computation, we approximate some partial derivatives with
their values determined in previous iterations (evaluated at previous models). To avoid
the effects of a systematic ordering of parameters in the model vector m, we evaluate
the partial derivatives cycling through a set of np random orthogonal directions. Letting
ek, (k ¼ 1, np) be unit vectors in np orthogonal directions, and Jek be the vector of
partial derivatives of the data d computed for a small model perturbation dm in
direction ek, then

F 0 ¼ F þ ðJek ¹ FekÞ et
k ðA9Þ

updates the partial derivative matrix in this direction. Cycling through all np directions
results in updating the entire matrix. We update F in approximately

√
np
— orthogonal

directions per iteration. In addition to these, we also update F in the directions of the
most recent improvement step (mi(bi) ¹ mi(b

i
s)), and the orthogonal component of

the corresponding smoothing step (mi(b
i
s) ¹ mi ¹ 1).

In short, after updating the partial derivative matrix, we solve equation (13) for the
estimated models m̂i þ 1(b i

s) and m̂i þ 1(b i) for use in solving for b i þ 1
s and b i þ 1

g , and
then solve for m̂i þ 1(b i þ 1

s ) and m̂i þ 1(b i þ 1). Forming the new model mi þ 1 through
equation (A2), we solve the full 2D forward problem for the new model mi þ 1 to
compute its response di þ 1 and residual ri þ 1. If the new model mi þ 1 reduces the object
function (i.e. satisfies (A1)), then it is accepted as the starting point for the next
iteration, otherwise the step size is reduced through a or z and F is updated in more
directions before computing mi þ 1 and di þ 1 again. If two successive iterations are
successful without decreases in a or z, then a or z is increased to increase the size of the
next attempted step.
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